A large deviations upper bound for the kernel mode estimator
نویسندگان
چکیده
منابع مشابه
A Berry-Esseen Type Bound for the Kernel Density Estimator of Length-Biased Data
Length-biased data are widely seen in applications. They are mostly applicable in epidemiological studies or survival analysis in medical researches. Here we aim to propose a Berry-Esseen type bound for the kernel density estimator of this kind of data.The rate of normal convergence in the proposed Berry-Esseen type theorem is shown to be O(n^(-1/6) ) modulo logarithmic term as n tends to infin...
متن کاملa berry-esseen type bound for the kernel density estimator of length-biased data
length-biased data are widely seen in applications. they are mostly applicable in epidemiological studies or survival analysis in medical researches. here we aim to propose a berry-esseen type bound for the kernel density estimator of this kind of data.the rate of normal convergence in the proposed berry-esseen type theorem is shown to be o(n^(-1/6) ) modulo logarithmic term as n tends to infin...
متن کاملA Large Deviations Bound for the Teichmüller Flow
Largedeviation rates areobtained for suspension flows over symbolic dynamical systems with a countable alphabet. The method is that of [1]. A corollary of the main results is a large deviation bound for the Teichmüller flow on the moduli space of abelian differentials, which extends earlier work of J. Athreya [2]. The “entropy approach” we use is similar to that of [20] (see also [10], [13]).
متن کاملLarge Deviations Theory and Empirical Estimator Choice
Criterion choice is such a hard problem in information recovery and in estimation and inference. In the case of inverse problems with noise, can probabilistic laws provide a basis for empirical estimator choice? That is the problem we investigate in this paper. Large Deviations Theory is used to evaluate the choice of estimator in the case of two fundamental situations-problems in modelling dat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Теория вероятностей и ее применения
سال: 2005
ISSN: 0040-361X
DOI: 10.4213/tvp168